HOUSATONIC RIVER BASIN DANBURY CONNECTICUT

MERCERS POND DAM CT 00068

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

The original hardway version of this report contains color photographs and/or drawings For additional information on this report please email

U.S. Army Corps of Engineers New England District Email: Library@nae02.usace.army.mil

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION, CORPS OF ENGINEERS
WALTHAM, MASS. 02154

JULY 1980

LINCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	ON PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
СТ 00068	ADD142743	
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
Housatonic River Basin Danbury Conn., Mercers Pond Dam		INSPECTION REPORT
NATIONAL PROGRAM FOR INSPECTION O	F NON-FEDERAL	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)		B. CONTRACT OR GRANT NUMBER(e)
U.S. ARMY CORPS OF ENGINEERS NEW ENGLAND DIVISION		
PERFORMING ORGANIZATION NAME AND ADDR	E\$S	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
1. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
DEPT. OF THE ARMY, CORPS OF ENGIN	IEERS	July 1980
NEW ENGLAND DIVISION, NEDED		13. NUMBER OF PAGES
424 TRAPELO ROAD, WALTHAM, MA. 02		. 65
4. MONITORING AGENCY NAME & ADDRESS(II diti	erent from Controlling Ullice)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		184. DECLASSIFICATION/DOWNGRADING SCHEDULE

15. DISTRIBUTION STATEMENT (of this Report)

APPROVAL FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from Report)

18. SUPPLEMENTARY NOTES

Cover program reads: Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report.

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)

DAMS, INSPECTION, DAM SAFETY,

Housatonic River Basin

Danbury Conn.,

Mercers Pond Dam

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Mercers Pond Dam is an earth embankment approx. 400 ft. long and 17 ft. high. Granite blocks line the downstream face. A 39-ft. long spillway is located at the western end of the dam. There is a 24-inch discharge pipe with a slide gate on the upstream face of the dam. The gae is not operable. The drainage basin is 4.5 square miles of which 3.3 square miles is controlled by another dam upstream. There is approx. 61 acre-feet of storage available.

MERCERS POND DAM CT 00068

HOUSATONIC RIVER BASIN
DANBURY, CONNECTICUT

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

NATIONAL DAM INSPECTION PROGRAM PHASE I INSPECTION REPORT

Identification Number:

Name:

Town:

County and State:

Stream:

Date of Inspection:

CT 00068

Mercers Pond Dam

Danbury

Fairfield County, Connecticut Tributary to Kohanza Brook

April 22, 1980

BRIEF ASSESSMENT

Mercers Pond Dam is an earth embankment approximately 400 feet long and 17 feet high. Granite blocks line the downstream face (250± feet). A 39-foot long spillway is located at the western end of the dam. There is a 24-inch discharge pipe with a slide gate on the upstream face of the dam. The gate is not operable. The drainage basin is 4.5 square miles of which 3.3 square miles is controlled by another dam upstream. There is approximately 27 acre-feet of storage available.

The assessment of the dam is based on the visual inspection, past operational performance and hydraulic/hydrologic computations. The dam is judged to be in fair condition with several areas that require attention. These areas include seepage along the toe of the dam, the poor condition of the stone face and the nonoperating status of the discharge pipe.

The dam is classified as small and has a high hazard potential in accordance with guidelines established by the Corps of Engineers. The test flood for these conditions is the Probable Maximum Flood (PMF). The test flood inflow is 6,150 cfs and the routed test flood outflow is 5,885 cfs. The test flood will overtop the dam by 2.75 feet.

It is recommended that the owner engage the services of a qualified registered engineer experienced in the design of dams to investigate the seepage along the toe of the dam, the poor condition of the granite stone face and prepare a detailed hydraulic/hydrologic study to determine the spillway's adequacy.

Additional recommendations and remedial measures are included in Section 7 and should be implemented within one year after receipt of the Phase I Inspection Report.

Joseph F. Merluzzo

Connecticut P.E. #7639

Project Manager

Gary J. Giroux

Connecticut P.E. #11477

Project Engineer

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Inspections. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Inspection is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigations and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Inspection; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I Inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established guidelines, the Spillway Test Flood is based on the estimated Probable Maximum Flood for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and variety of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies considering the size of the dam, its general condition and the downstream damage potential.

The Phase I Inspection does not include an assessment of the need for fences, gates, "no trespassing" signs, repairs to existing fences and railings and other items which may be needed to minimize trespass and provide greater security for the facility and safety to the public. An evaluation of the project for compliance with Occupational Safety and Hazard Administration's (OSHA) rules and regulations is also excluded.

TABLE OF CONTENTS

		<u>Pa</u>	age
Brie Revi Pref Tabl Over	f Ass ew Bo ace	Photo	i-iv
<u>Sect</u>	ion		
1.	PROJ	ECT INFORMATION	
	1.1	General	
		a. Authority	
	1.2	Description of Project	
		a. Location	
	1.3	Pertinent Data	i I
2.	ENGI	NEERING DATA	
	2.1	Design Data	
	2.2	Construction Data	1
	2.3	Operation Data 7	ı
	2.4	Evaluation of Data	,
3.	VISU	AL INSPECTION	
	3.1	Findings	;
		a. General	,

Sect	<u>ion</u>	• ••		Page
	3.2	Evaluation		9
4.	OPER	ATIONAL AND MAINTENANCE PROCEDURES		
	4.1	Operational Procedures	• • • •	10
		a. General		10 10
	4.2	Maintenance Procedures		10
		a. General		10 10
	4.3	Evaluation		10
5.	EVAL	UATION OF HYDRAULIC/HYDROLOGIC FEATURES		
	5.1	General		11
	5.2	Design Data		11
	5.3	Experience Data		11
	5.4	Test Flood Analysis		12
	5.5	Dam Failure Analysis		12
6.	EVAL	UATION OF STRUCTURAL STABILITY		
	6.1	Visual Observations		14
	6.2	Design and Construction Data		14
	6.3	Post-Construction Changes		14
	6.4	Seismic Stability		14
7.	ASSE	SSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES		
	7.1	Dam Assessment		15
		a. Condition		15 15 15
	7 2	Recommendations		15

Section	<u>Page</u>
7.3 Remedial Measures · · · · · · · · · · · · · · · · · · ·	15
a. Operation and Maintenance Procedures	15
7.4 Alternatives	16
APPENDICES	
APPENDIX A - Inspection Checklist	
APPENDIX B - Engineering Data	
APPENDIX C - Photographs	
APPENDIX D - Hydrologic and Hydraulic Computations	
APPENDIX E - Information as Contained in the National Inventory of Dams	

MERCERS POND DAM

PHASE I INSPECTION REPORT MERCERS POND DAM CT 00068

SECTION 1 - PROJECT INFORMATION

1.1 General

- a. Authority Public Law 92-367, August 8, 1972 authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Storch Engineers has been retained by the New England Division to inspect and report on selected dams in the State of Connecticut. Authorization and notice to proceed were issued to Storch Engineers under a letter of March 6, 1980 from William E. Hodgson, Jr., Colonel, Corps of Engineers. Contract No. DACW33-80-C-0035 has been assigned by the Corps of Engineers for this work.
 - b. Purpose of Inspection -
- (1) Perform technical inspection and evaluation of non-Federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-Federal interests.
- (2) Encourage and prepare the states to initiate quickly effective dam safety programs for non-Federal dams.
 - (3) To update, verify and complete the National Inventory of Dams.

1.2 Description of Project

a. Location - Mercers Pond Dam is located approximately 1 mile north of the Route 7 and Interstate 84 interchange in the City of Danbury, Connecticut (See Location Map). The coordinates of the dam are 41°-24' north latitude and 73°-28.5' west longitude. The dam is located on a tributary of Kohanza Brook in the Housatonic River Basin.

b. Description of Dam and Appurtenances - Mercers Pond Dam is an earth embankment 400 feet long and 17 feet high. The dam is "L" shaped with one leg fortified on the downstream face with granite stone blocks. The length of the granite stone face is approximately 250 feet. The remainder of the downstream face is vegetated.

The spillway is located at the western end of the dam and consists of a 39-foot long concrete weir. Adjacent to the spillway and to the north is a headwall with a slide gate to a 24-inch discharge pipe. This discharge pipe outlets approximately 50 feet downstream. The gate is not operable.

- c. Size Classification Mercers Pond Dam has a maximum height of 17 feet and a maximum storage of 61 acre-feet at the top of the dam. In accordance with the <u>Recommended Guidelines for Safety Inspection of Dams</u> established by the Corps of Engineers, the dam is classified as small (height less then 40 feet, storage less than 1,000 acre-feet).
- d. Hazard Classification The Mercers Pond Dam is classifed as having a high hazard potential. Failure of the dam could result in the loss of more than a few lives and cause minor property damage. Approximately 700 feet downstream is a nursing home built immediately adjacent to the brook. Estimated flow and water depth just prior to dam failure at this location is 1,036 cfs at 3 feet and just after dam failure is 12,840 cfs at 9 feet.
 - e. Ownership Mercers Pond Dam is owned by:

Westover Center, Inc. c/o F. L. Adler 136-138 Franklin Street, Ext. Danbury, Connecticut 06810 f. Operator - The person in charge of day-to-day operation of the dam is:

Mr. F. L. Adler 136-138 Franklin Street, Ext. Danbury, Connecticut 06810 (203) 748-0818

- g. Purpose of Dam The dam impounds Mercers Pond which is used for recreation.
- h. Design and Construction History Mercers Pond Dam was constructed around 1900. There are no design computations or drawings for the dam. The spillway was reconstructed in 1968, per order of the Department of Environmental Protection (DEP). This reconstruction lowered the spillway crest 2.5 feet to increase its capacity. The plans were designed by Philip W. Genovese and Associates, Inc., Hamden, Connecticut.
 - Normal Operating Procedures There are no normal operating procedures.

1.3 Pertinent Data

- a. Drainage Area The Mercers Pond drainage basin is located in the City of Danbury, Connecticut and is irregular in shape. The area of the drainage basin is 4.5 square miles (Appendix D Plate 3) of which 3.3 square miles is controlled by West Lake Reservoir Dam. This reservoir is a water supply for the City of Danbury. Therefore, its operation is not for flood control. Approximately 10 percent of the drainage basin is natural storage and approximately 50 percent is undeveloped. The topography is rolling with elevations ranging from 1,067 (NGVD) to 480.7 (NGVD) at the spillway crest.
- b. Discharge at Damsite There are no records available for discharge at the dam.
 - (1) Outlet works (conduit) size: 24 inches
 Invert elevation (feet above NGVD): 477.0

		Discharge Capacity at top of dam:	40 cfs
	(2)	Maximum known flood at damsite:	unknown
	(3)	Ungated spillway capacity at top of dam:	1,036 cfs
		Elevation (NGVD):	484.3
	(4)	Ungated spillway capacity at test	
		flood elevation:	2,050 cfs
		Elevation (NGVD):	487.05
	(5)	Gated spillway capacity at normal pool	
		elevation:	N/A
		Elevation (NGVD):	N/A
	(6)	Gated spillway capacity at test flood	
		elevation:	N/A
		Elevation:	N/A
	(7)	Total spillway capacity at test flood	
		elevation:	2,050 cfs
		Elevation (NGVD):	487.05
	(8)	Total project discharge at top of dam:	1,076 cfs
		Elevation (NGVD):	484.3
	(9)	Total project discharge at test flood	
		elevation:	5,885 cfs
		Elevation (NGVD):	487.05
c.	Elev	ation (feet above NGVD)	
	(1)	Streambed at toe of dam:	467.3
	(2)	Bottom of cutoff:	unknown
	(3)	Maximum tailwater:	472

	(4)	Normal pool:	480.7
	(5)	Full flood control pool:	N/A
	(6)	Spillway crest (ungated):	480.7
	(7)	Design surcharge (original design):	unknown
	(8)	Top of dam:	484.3
	(9)	Test flood surcharge:	487.05
d.	Rese	rvoir (length in feet)	
	(1)	Normal pool:	900
	(2)	Flood control pool:	N/A
	(3)	Spillway crest pool:	900
	(4)	Top of dam:	950
	(5)	Test flood pool:	1,000
e.	Stor	rage (acre-feet)	
	(1)	Normal pool:	34
	(2)	Flood control pool:	N/A
	(3)	Spillway crest pool:	34
	(4)	Top of dam:	61
	(5)	Test flood pool:	87
f.	Rese	rvoir Surface (acres)	
	(1)	Normal pool:	6
	(2)	Flood control pool:	N/A
	(3)	Spillway crest:	6
	(4)	Test flood pool:	10
	(5)	Top of dam:	8.5
g.	Dam		
	(1)	Type:	earth embankment/
			granite block face

	(2)	Length:	400 feet
	(3)	Height:	17 feet
	(4)	Top width:	12 feet
	(5)	Side slopes:	U/S - 2:1
			D/S - 1:6
	(6)	Zoning:	unknown
	(7)	Impervious core:	unknown
	(8)	Cutoff:	unknown
	(9)	Grout curtain:	unknown
	(10)	Other:	N/A
h.	Dive	ersion and Regulating Tunnel	N/A
i.	Spil	llway	
	(1)	Type:	concrete-broad crested wei
	(2)	Length of weir:	39 feet
	(3)	Crest elevation (without flashboard):	480.7
	(4)	Gates:	N/A
	(5)	U/S channel:	riprap and natural ground
	(6)	D/S channel:	riprap and natural channel
	(7)	General:	N/A
j.	Regu	ulating Outlets	
	(1)	Invert elevation (NGVD):	477
•	(2)	Size:	24 inches
	(3)	Description:	reinforced concrete pipe
	(4)	Control 'Mechanism	manually operated
		•	slide gate
	(5)	Other:	gate not operable

2.1 Design Data

There are no design computations available; however, there are drawings for the reconstructed spillway.

2.2 Construction Data

The dam was constructed at the turn of the century, however, there are no records available for the construction. The spillway was reconstructed in 1968 per order of DEP. The reconstruction consists of lowering the spillway crest 2.5 feet to increase its capacity. This was accomplished by cutting the concrete of the existing spillway. This reconstruction work was designed and supervised by Philip Genovese and Associates, Inc.

2.3 Operation Data

The slide gate is presently frozen closed. There are no operating procedures.

2.4 Evaluation of Data

- a. Availability There were no computations available, however, there are drawings for the reconstructed spillway. These drawings are available from the DEP.
- b. Adequacy The information made available along with the visual inspection, past performance history and hydraulic/hydrologic assumptions were adequate to assess the condition of the facility.
- c. Validity Due to the lack of available data, the conclusions and recommendations found in this report are based on the visual inspection and hydraulic/hydrologic computations.

3.1 Findings

a. General - The visual inspection was conducted on April 22, 1980 by members of the engineering staff of Storch Engineers, D. Baugh and Associates, Inc. and Matthews Associates. A copy of the visual inspection check list is contained in Appendix A of this report. Selected photos of the dam and appurtenant structures are contained in Appendix C.

In general, the overall condition of the dam and its appurtenant structures is fair.

b. Dam - The dam is an earth embankment with portions of the downstream faced with granite blocks. The condition of this face varies. The eastern portion of the wall is in fairly good condition, the central portion of the wall seems to be bulging with the top stones missing and the western portion of the dam has completely fallen down (Photos 2, 5 and 7). The remainder of the downstream embankment is on a 2:1 slope with grass and some small trees growing on it. The top of the embankment is in good condition with grass and some brush growing on it. There are several low spots along the top of the dam, however, these low spots seem to have always been there and not a result of settlement. The upstream face of the dam is riprapped and is in good condition, but is overgrown with brush and weeds (Photo 1).

There were several areas along the toe of the dam that are wet and seepage is coming through the dam (Photos 7 and 8). This seepage was estimated to be 10 to 15 gallons per minute. This seepage is clear and does not show any signs of particle movement.

c. Appurtenant Structures - The concrete headwall for the slide gate is on the upstream side of the embankment and is in good condition, however, the slide gate is not operating and is closed. The 24-inch concrete pipe is in good condition (Photo 6).

The spillway is a fixed concrete weir that appears to be in good condition.

The training walls for the spillway are dry rubble and are in fair condition,

but could be a problem during high flow (Photo 3).

- d. Reservoir Area The area immediately adjacent to the pond is gently sloped on the east side and steep on the west. Both sides are wooded and in a natural state. The shoreline shows no signs of sloughing or erosion and there is no development adjacent to the reservoir. A rapid rise in water level of the reservoir will not endanger any life or property.
- e. Downstream Channel The spillway channel is in a natural state with rocks and boulders lining the bottom. The channel is well defined with steep side slopes (Photo 4a).

3.2 Evaluation

Overall, the general condition of the dam is fair. The visual inspection revealed items that lead to this assessment, and apparent areas of distress such as:

- a. Seepage through the embankment and the toe.
- b. Inoperation of the discharge pipe.
- c. Vegetation on the downstream face along the toe of the dam.
- d. Bulging of the granite block wall and the total collapse of the wall in one area.

SECTION 4 - OPERATIONAL AND MAINTENANCE PROCEDURES

4.1 Operational Procedures

- a. General The operation of this facility is strictly for the purpose of recreation and the water level is kept at spillway crest only because the slide gate is inoperable.
- b. Description of any Warning System in Effect There is no warning system in effect for this dam.

4.2 Maintenance Procedures

- a. General This dam appears to be given the minimum of maintenance.
- b. Operating Facilities The gate and the discharge pipe are not operating and have not been for sometime.

4.3 Evaluation

The maintenance of the dam is less than adequate in that proper care of the dam embankment should be on a regular basis. The slide gate should be maintained in working order and there should be a proper operating procedure and warning system in effect.

5.1 General

The Mercers Pond Dam is an earth embankment dam approximately 450 feet long and 17 feet high. Approximately 250 feet of the downstream face is granite block. The spillway is a concrete weir, 39 feet long. A 24-inch reinforced pipe passes through the dam with a slide gate on the upstream side of the embankment. The slide gate is inoperable.

The watershed encompasses 4.5 square miles of which 3.3 square miles is controlled by West Lake Reservoir Dam. Approximately 50 percent of the drainage basin is developed. The topography is rolling with the terrain rising 586 feet from the spillway crest.

The pond has a total capacity of 61 acre-feet when the pond is at the top of the embankment and 34 acre-feet at the spillway crest. Therefore, there is approximately 27 acre-feet of storage available. The test flood outflow for this dam is 5,885 cfs and the spillway capacity is 1,036 cfs or approximately 17.6% of the test flood outflow.

5.2 Design Data

No design data is available.

5.3 Experience Data

The Mercers Pond Dam has experienced all the major storms of the 1930's and 1950's and most recently January, 1979. The flood of record resulted from the storm of October, 1955. No records are available for this flood, however, from conversations with Mrs. Adler, the dam was sandbagged and the eastern portion was overtopped during this storm.

5.4 Test Flood Analysis

Based on the guidelines found in the <u>Recommended Guidelines for Safety Inspection of Dams</u>, the dam is classified as a small structure with a high hazard potential. The test flood for these conditions range from 1/2 the Probable Maximum Flood (PMF) to the PMF. The PMF was used because of the probable loss of life.

Using the guide curves established by the Corps of Engineers (rolling terrain), the test flood inflow is 6,150 cfs. The routing procedure established by the Corps gives an approximate outflow of 5,885 cfs. The spillway capacity is approximately 1,036 cfs or approximately 17.6% of the test flood outflow. The test flood will overtop the dam by approximately 2.75 feet.

In the development of the test flood inflow, it was assumed that the peak outflow from West Lake Reservoir Dam and the peak runoff from the independent watershed occurred at the same time. This simplified the development of the inflow hydrograph, the routing through the dam and the outflow hydrograph for Mercers Pond Dam.

Storage behind the dam was assumed to begin at the elevation of the spillway crest. Storage was determined by an average area depth analysis. Capacity curves for the spillway assumed weir flow.

5.5 <u>Dam Failure Analysis</u>

A dam failure analysis was performed using the <u>Rule of Thumb</u> method in accordance with guidelines established by the Corps of Engineers. Failure was assumed to occur when the water level in the reservoir was at the top of the dam.

The spillway discharge just prior to dam failure is 1,036 cfs and will produce a depth of flow of approximately 3 feet several hundred feet downstream

from the dam. The calculated dam failure discharge is 12,840 cfs and will produce a depth of flow of approximately 9 feet several hundred feet downstream from the dam or an increase in water depth at failure of approximately 6 feet. The failure analysis covered a distance of approximately 2,000 feet downstream where the depth of flow was calculated to be 4.5 feet or an increase in depth at failure of 1.5 feet.

Failure of the Mercers Pond Dam may result in the loss of more than a few lives and may damage at least three structures. Located approximately 700 feet downstream is a nursing home that was built immediately adjacent to the brook. At this location and prior to dam failure, the flow in the brook will be 1,036 cfs at 3 feet deep. At failure the flow will be 9,300 cfs at 8.8 feet or an increase of 5.8 feet. This increase could damage the structure because of its close proximity to the brook. Due to the age and health of the inhabitants, this could be disasterous.

6.1 Visual Observations

The general structural stability of the dam is fair as evidenced by the vertical, horizontal and lateral alignment. The granite block face of the dam varies in condition from poor to good. The eastern half of the stone face is in good condition with good alignment. The central portion of the stone face has the uppermost stones removed and appears to have a bulge in the face. The western portion of the stone face has fallen down. It is not known when this happened or what caused it.

The spillway weir seems to be in good condition, but the training wall just below the spillway is in poor condition and could cause problems during high flow.

6.2 Design and Construction Data

The original design and construction data are not available. However, there is design and construction data available for the reconstruction of the spillway.

6.3 Post-Construction Changes

Since the reconstruction of the spillway, there have been no post-construction changes.

6.4 Seismic Stability

The dam is located in Seismic Zone 1 and in accordance with Recommended Phase I Guidelines does not warrant a seismic analysis.

7.1 Dam Assessment

- a. Condition After consideration of the available information, the results of the inspection, contact with the owner and hydraulic/hydrologic computations, the general condition of Mercers Pond Dam is fair.
- b. Adequacy of Information The information available is such that an assessment of the safety of the dam should be based on the available data, the visual inspection results, past operational performance of the dam and its appurtenant structures and computations developed for this report.
- c. Urgency It is considered that the recommendations suggested below be implemented within one year after receipt of this Phase I Inspection Report.

7.2 Recommendations

The following recommendations should be carried out under the direction of a qualified registered engineer.

- a. Seepage through the dam and at the toe of the dam should be investigated further to determine its origin and monitored to determine any changes.
- b. Structural stability of the embankment and the granite block face should be analyzed, monitored and repaired.
- c. Prepare a detailed hydraulic/hydrologic study to determine spillway adequacy and an increase of the total project discharge if necessary.

7.3 Remedial Measures

- a. Operation and Maintenance Procedures -
 - (1) Downstream of the spillway channel should be cleared of debris.

- (2) Vegetation on the downstream face of the dam and trees along the toe of the dam should be removed. This will facilitate the visual observation of existing and potential seepage. Grass on the top of the dam should be mowed periodically.
 - (3) Slide gate should be repaired.
- (4) Plans for a regular program of operation and maintenance of the dam should be initiated.
- (5) Plans for around-the-clock surveillance should be developed for periods of unusually heavy rains and a formal downstream warning system should be put into operation for use in the event of an emergency.
- (6) A program of annual technical inspection should be established.7.4 Alternatives

None

APPENDIX A

INSPECTION CHECK LIST

Inspection check list PARTY ORGANIZATION

PROJECT	MERCERS POND DAM		DATE 4/22/80	·
•			TIME 12:30 p.m.	
			WEATHER Clear	
			W.S. ELEV.	_u.sdn.s.
PARTY:				·
1. John	n F. Schearer, SE Civil	6	John Pozzato, MA, Mech	1.
2. Kenr	meth J. Pudeler, SE Civil	7		
3. Gary	y J. Giroux, SE Hyd/Civil	8		
4. Mich	nael Haire, DBA Struct/Geo.		•	
	er Austin, DBA Civil	_		
	PROJECT FEATURE		INSPECTED BY	. REMARKS
1	•			
•				
3	· .			•
4.			•	
.5.			•	
6.				
7.				
		\		
J	· · · · · · · · · · · · · · · · · · ·			

INSPECTION CHECK LIST		
PROJECT MERCERS POND DAM	DATE 4/22/80	
PROJECT FEATURE	KANE	
DISCIPLINE	NAME	
AREA EVALUATED	CONDITIONS	
DAM EMBANKMENT		
Crest Elevation	Good	
Current Pool Elevation	Good	
Maximum Impoundment to Date	Good	
Surface Cracks	N/A	
Pavement Condition	N/A	
Hovement or Settlement of Crest	None	
Lateral Movement	Bulge in stone west of center	
Vertical Alignment	Good	
Horizontal Alignment	Good	
Condition at Abutment and at Concrete Structures	Good	
Indications of Movement of Structural Items on Slopes	N/A	
Trespassing on Slopes Vegitation on Slopes Sloughing or Erosion of Slopes or Abutments	Problem Some - well maintained Stone piled at west end - not clear if it was a failure or piled intentionally	
Rock Slope Protection - Riprap Failures	None	
Unusual Movement or Cracking at or pear Toes	None	
Unusual Embankment or Downstream Seepage	Seasonal seepage at toe	
Piping or Boils	None	
Foundation Drainage Features	None ,	
Toe Drains	None	
Instrumentation System A-2	None	

INSPECT	ION CHECK LIST
FROJECT MERCERS POND DAM .	DATE 4/22/80
FROJECT FEATURE	KANE
DISCIPLINE	nave
AREA, EVALUATED	CONDITION
CUTLET WORKS - INTAKE CHARREL AND INTAKE STRUCTURE	
a. Approach Channel	Underwater
Slope Conditions	
Bottom Conditions	·
Rock Slides or Falls	·
Log Boom	
Debris	
Condition of Concrete Lining	
Drains or Weep Holes	·
b. Intake Structure	
Condition of Concrete	Good
Stop Logs and Slots	None
	,

Inspect	ION CHECK LIST
PROJECT MERCERS POND DAM	DATE 4/22/80
PROJECT PEATURE	MAME
DISCIPLINE	name
	·
ÀREA EVALUATED	CONDITION
OUTLET WORKS - CONTROL TOWER .	None
a. Concrete and Structural	
General Condition	•
Condition of Joints	
Spalling	
Visible Reinforcing	
Rusting or Staining of Concrete	
Any Seepage or Efflorescence	•
Joint Alignment	
Unusual Seepage or Leaks in Gate Chamber	
Cracks	
Rusting or Corrosion of Steel	
b. Mechanical and Electrical	
Air Vents	
Float Wells	,
Crane Hoist	
Elevator	
Hydraulic System	
Service Gates	, in the second
Emergency Gates	6
Lightning Protection System	
Emergency Power System	·
Wiring and Lighting System in Gate Chamber A-4	·

PROJECT MERCERS POND DAM PROJECT FEATURE DISCIPLIE AREA EVALUATED OUTLET WORKS - TRANSITION AND CONDUCT General Condition of Concrete Rust or Staining on Concrete Spalling Erosion or Cavitation Cracking Alignment of Monoliths Alignment of Joints Numbering of Monoliths	INS	PECTION CHECK LIST
AREA EVALUATED CUTTLET WORKS - TRANSITION AND CONDUIT General Condition of Concrete Rust or Staining on Concrete Spalling Erosion or Cavitation Cracking Alignment of Monoliths Alignment of Joints Numbering of Monoliths	PROJECT MERCERS, POND DAM	- DATE 4/22/80
OUTLET WORKS - TRANSITION AND CONDUIT General Condition of Concrete Rust or Staining on Concrete Spalling Erosion or Cavitation Cracking Alignment of Monoliths Alignment of Joints Numbering of Monoliths	PROJECT FEATURE	NAME
General Condition of Concrete Rust or Staining on Concrete Spalling Erosion or Cavitation Cracking Alignment of Monoliths Alignment of Joints Numbering of Monoliths	DISCIPLINE	RAME
General Condition of Concrete Rust or Staining on Concrete Spalling Erosion or Cavitation Cracking Alignment of Monoliths Alignment of Joints Numbering of Monoliths		
General Condition of Concrete Rust or Staining on Concrete Spalling Erosion or Cavitation Cracking Alignment of Monoliths Alignment of Joints Numbering of Monoliths	AREA EVALUATED	CONDITION
General Condition of Concrete Rust or Staining on Concrete Spalling Erosion or Cavitation Cracking Alignment of Monoliths Alignment of Joints Numbering of Monoliths	OUTLET WORKS - TRANSITION AND CONDUIT	2A" R.C. pipe - good goodition
Rust or Staining on Concrete Spalling Erosion or Cavitation Cracking Alignment of Monoliths Alignment of Joints Numbering of Monoliths	General Condition of Concrete	controlled by a slide gate - stuck in
Erosion or Cavitation Cracking Alignment of Monoliths Alignment of Joints Numbering of Monoliths	Rust or Staining on Concrete	are crosed position.
Cracking Alignment of Monoliths Alignment of Joints Numbering of Monoliths	Spalling	
Alignment of Monoliths Alignment of Joints Numbering of Monoliths	Erosion or Cavitation	
Alignment of Joints Numbering of Monoliths	Cracking	
Numbering of Monoliths	Alignment of Monoliths	
	Alignment of Joints	
	Numbering of Monoliths	·
	·	

Inspection check list		
PROJECT MERCERS POND DAM	DATE 4/22/80	
PROJECT FEATURE	NAME	
DISCIPLINE	NAME	
•		
AREA EVALUATED	CONDITION	
OUTLET WORKS - OUTLET STRUCTURE AND OUTLET CHANNEL	None	
General Condition of Concrete		
Rust or Staining		
Spalling		
Erosion or Cavitation	·	
Visible Reinforcing		
Any Seepage or Efflorescence		
Condition at Joints	•	
Drain holes		
Channel		
Loose Rock or Trees Overhanging Channel	Some	
Condition of Discharge Channel	Good .	
,		
,		
	,	

Dispection Check List		
PROJECT MERCERS POND DAM	DATE 4/22/80	
PROJECT FEATURE	NAME	
DISCIPLINE NAME		
AREA EVALUATED .	CONDITION	
OUTLET WORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANGELS		
a. Approach Channel	Underwater	
General Condition		
Loose Rock Overhanging Channel		
Trees Overhanging Channel		
Floor of Approach Channel		
b. Weir and Training Walls	Weir - good condition. Walls-poor (just stacked stones and conc. blocks-some	
General Condition of Concrete	undermining) GOOD	
Rust or Staining	None	
Spelling	None	
Any Visible Reinforcing	None	
Ary Seepage or Efflorescence	None	
Drain Holes	None	
c. Discharge Channel		
General Condition	. Ġoođ	
Loose Rock Overhanging Channel	Some	
Trees Overhanging Channel	Some	
Floor of Channel	Rocky (natural) - good	
Other Obstructions	Some large boulders	

Inspection Check List	
PROJECT MERCERS POND DAM	. DATE 4/22/80
PROJECT FEATURE	XAME
DISCIPLINE	KAME
AREA EVALUATED	CONDITION
OUTLET WORKS - SERVICE BRIDGE	N/A
a. Super Structure	
Bearings	
Anchor Bolts	
Bridge Seat	
Longitudinal Members	
Under Side of Deck	
Secondary Bracing	
Deck	
Drainage System	
Railings	·
Expansion Joints	
Peint	
b. Abutment & Piers	,
General Condition of Concrete	
Alignment of Abutment	
· Approach to Bridge	
Condition of Seat & Backwall	•

APPENDIX B

ENGINEERING DATA

Information pertaining to the history, maintenance and past inspection reports are located at:

State of Connecticut
Department of Environmental Protection
Water Resources Unit
State Office Building
Hartford, Connecticut 06115

MACCHI ENGINEERS

EXECUTIVE OFFICES

44 GILLETT STREET

HARTFORD, CONN., 06105

PHONE (203) 549-6190

A. J. MACCHI, P.E. JOSE H. COSIO, P.E. MICHAEL GIRARD, P.É.

ASSOCIATE CONSULTANT PROF. C. W. DUNHAM

WATER & RELATED
RESOURCES
RECEIVED

JUN 21975

June 2, 1975

ANSWERL REFERRED FILED

Mr. Victor F. Galgowski Supt. of Dam Maintenance Water and Related Resources Dept. of Environmental Protection 165 Capitol Avenue Hartford, Conn. 06115

Re: Mercers Pond Dam, Danbury

Dear Mr. Galgowski:

Pursuant to our telephone conversation and your follow up letter, dated May 27, 1975, we are submitting the enclosed inspection report for the above-referenced dam.

If you have any questions, please call.

Very truly yours,

MACCHI ENGINEERS

A. J. MARCHE, P.E.

Encl.

MERCERS POND DAM DANBURY, CONNECTICUT

INSPECTION REPORT

FOR THE

STATE DEPARTMENT OF ENVIRONMENTAL PROTECTION WATER AND RELATED RESOURCES

BY

MACCHI ENGINEERS HARTFORD, CONNECTICUT

MAY, 1975

MERCERS POND DAM, DANBURY, CONNECTICUT

INTRODUCTION

Mercers Pond Dam is located in the North-West section of Danbury and is owned by the family of Frederick L. Adler, residing adjacent to the dam at 6 Franklin Street Extension, Danbury, Connecticut.

Mr. A. J. Macchi, P.E. and Josef Womelsdorf of Macchi Engineers inspected the dam and site on May 28, 1975. The request for this safety inspection was made by Mr. Victor F. Galgowski, Superintendent of Dam Maintenance for the State Department of Environmental Protection. Mrs. Adler provided certain information on the history of the dam.

The area of Mercers Pond Dam is approximately five (5) acres. Outflow on May 28, 1975 was estimated to be less than one (1) cfs.

DESCRIPTION

- 1. The dam is a massive granite block masonry structure with open joints topped with shallow soil, grass and brush growth about 3 ft. high. It is approximately 250 ft. long in East-West direction with a 150 ft. return at the East side. The maximum height is 17+ ft. The spillway is located at the West end of the dam. (See plan and sections included with this report.)
- No seepage of leakage was observed. There was no indication of any displacement of the granite blocks.
- 3. Mrs. Adler stated that the dam overtopped during the 1955 flood near the easterly end, where a landing platform is now located. This is still the low point of the dam, extending to 3.5+ ft. above the spillway, compared to 4 ft. adjacent to the spillway and 5 ft. at the east side.
- 4. Mrs. Adler stated that the spillway was lowered about 3 ft. as directed by the State three years ago. Mrs. Adler now is interested to install fail safe flashboards to raise the pond elevation and to eliminate the undesirable marsh condition at the upstream end of the pond.
- 5. The present spillway which is 39 ft. wide is formed by a 16" concrete cut-off wall backfilled with 200 500 lb. riprap at the downstream side, flanked by open joint masonry on the east side and a natural, steep embankment on the west side.

 "The concrete endwalls are minimum 3.5 ft. high. The downstream channel contracts to a width of about 20 ft. and a depth of about 5 ft. The slope is approximately 10%.

6. An upstream box culvert at Middle River Road is 3.5 ft. high and 10 ft. wide. Two hundred yards downstream, the structure under Franklin Street is a masonry arch, approximately 12 ft. wide and 8 ft. high.

The direct drainage area of Mercers Pond is approximately 700 acres. However, outflow from upstream West Lake Reservoir, owned by the City of Danbury, drains into Mercers Pond.

SUMMARY

- 1. The granite block dam structure is in good condition.
- 2. The spillway and downstream channel are in good condition.
- 3. The new spillway capacity should prevent future overtopping.
- 4. A hydraulic analysis of possible effects from the West Lake Reservoir is outside the scope of this report.

RECOMMENDATIONS .

- 1. The brush growth within the dam area should be cut during the next two years.
- 2. The recently reconstructed downstream channel should be checked in three to four years for erosion.

SECTION SCALE : |" = 101

CCALE: 11 - 101

MERCERS PO

A.J.M

DATE

POND COUNT

SHEET NO

w

MERCERS POND DAM DANBURY, CONNECTICUT MAY 28, 1975 CLARENCE BLAIR ASSOCIATES

ROGER C. BROWN IAMES C. BEACH FRANK RAGAIN!

٠,

CLARENCE M. BLAIR

Civil and Sanitary Engineers
93 WHITNEY AVENUE
P. O. BOX 236
NEW HAVEN, CONNECTICUT 06502

CHARLES E. AUGUR, JR. JOHN M. BREST DONALD L. DISBROW NICHOLAS PIPERAS, JR.

NUL

TEL 777-7379

February 17, 1966

State of Connecticut
Water Resources Commission
State Office Building
Hartford 15, Connecticut

Re: MERCERS POND DAM
DANBURY, CONNECTICUT

Gentlemen:

Herewith is my report on Mercers Pond Dam in Danbury, Connecticut.

1. IDENTIFICATION

This report was made at the request of Mr. William P. Sander in a letter dated May 7, 1965.

A survey of the dam was made on July 6, 1965.

An inspection was made by the writer and an assistant engineer on October 21, 1965.

The dam is located on a tributary of Padanaram Brook in the northwesterly section of Danbury about 500 feet westerly of Franklin Street.

Latitude

41-24-05

Longitude

73-28-35

The owner of record is Westover Center, Inc., P.O. Box 507, Danbury, Connecticut.

2. FACTORS OF HAZARD

Serious property damage and possible loss of life would take place about 700 feet downstream if the dam failed either during a flood or during ordinary flows.

At this point, 700 feet downstream, a convalescent home is located directly on the bank of the brook. A major flood or a giving away of the dam

Water Resources Commission
Mercers Pond Dam, Danbury, Connecticut

February 17, 1966

probably would result in serious property damage and possible loss of life.

The dam in my opinion is a structure which by breaking away would endanger life.

3. STRUCTURE

Mercers Pond Dam is approximately 500 feet long with a maximum height of about 20 feet.

The main portion of the dam is 250 feet long in a straight line, approximately at a right angle with the valley. The remaining 250 feet of the dam consists of an earth embankment curving in an upstream direction.

The main portion of the dam consists of an earth embankment against a stone retaining wall on the downstream face. A typical section through this part of the dam has a top width of 13 feet including 3 feet of top width of the retaining wall. The upstream slope of the embankment is about 1 vertical on 2 horizontal below the water line and steeper above the water line. There is some rough riprap visible above and at the water line. The top of the dam is well sodded and has bushes and a few trees growing from it.

The downstream retaining wall has a batter of 3 feet in 17 feet of height. It is of dry masonry of good substantial stones and is in fair condition but several of the cap stones are missing from the top.

No information was available as to foundation conditions. Indications were that the westerly end of the dam in the vicinity of the spillway may be on rock foundation.

The spillway is at the westerly end of the dam. The present overflow weir is a concrete wall 15 inches wide. Indications are that the original spillway was 41.5 feet wide and 3.5 to 4.0 feet deep. The new concrete overflow wall across the spillway has a notch 39 feet long and 1.2 feet below its abutments.

A profile along the top of the dam shows several points which are only l.l feet above the overflow weir. The higher portions of the main dam are only l.5 feet above the overflow.

At a stage of 1.1 feet water would begin to flow over the top of the dam in several places.

At a stage of 1.5 feet water would begin to go over practically the entire 250 foot length of the main dam.

The concrete wall forming the present overflow weir is 2.9 feet high on the downstream side above a concrete apron, and 4.4 feet high on the

Water Resources Commission
Mercers Pond Dam, Danbury, Connecticut

February 17, 1966

upstream side. The whole wall is in good condition and comparatively new. It apparently has been built across the old spillway to raise the water level in the pond. The existing spillway, at a stage of l.l feet, the height at which flow over the dam would take place, is estimated to have a capacity of 151 cfs.

Due to the construction of the dam with the masonry retaining' wall forming the downsteam face, the dam can take some overtopping without damage. However the fact that some of the cap stones are missing makes the top of the wall uneven and would tend to concentrate overflow at the low points causing erosion gulleys across the top of the embankment.

Some slight seepage was observed at the bottom of the dam at its highest point.

The stone retaining wall was in good condition except for the missing stones along the top as previously mentioned.

4. HYROLOGY

The total drainage area tributary to Mercers Pond is 4.37 square miles.

On this watershed is West Lake Reservoir, a water supply reservoir for the City of Danbury. This is a large reservoir with a capacity of 1.6 billion gallons and a surface area of 218 acres. The dam at West Lake is about 1.5 miles upstream from the dam at Mercers Pond. The drainage area tributary to West Lake is 3.26 square miles, leaving the direct, uncontrolled drainage area at Mercers Pond at 1.11 square miles.

A hypothetical storm having a rainfall of 6 inches in 24 hours, based on rainfall recorded on September 20-21, 1938 (the 1938 hurricane storm) was used to develop a runoff hydrograph. Peak inflow for West Lake was estimated to be 777 cfs and peak outflow 400 cfs.

The peak inflow at Mercers Pond was estimated to be 175 cfs from the 1.11 square miles of drainage area below West Lake plus the 400 cfs peak outflow from West Lake. Since the storage in Mercers Pond is not significant, the outflow should equal the inflow for a total peak outflow of 575 cfs.

As we previously stated the existing spillway has a capacity of 151 cfs before over topping the dam. A discharge of 575 cfs would produce a stage of 2.7 feet with the dam being overtopped by 1.6 feet in places.

5. SAFETY

In my opinion the dam is unsafe at the present time because of inadequate spillway capacity. The unsafe condition is serious since

Water Resources Commission
Mercers Pond Dam, Danbury, Connecticut

February 17, 1966

the existing spillway capacity is only about 26% of our design discharge. The dam is likely to fail from a flood runoff which would overtop the dam, erode gulleys in the embankment and cause failure of the masonry wall.

The dam should have periodic inspection until the lack of adequate freeboard is corrected.

6. REQUIREMENTS

In my opinion it is necessary to cut down the concrete spillway wall by at least 2.5 feet for its entire length of 39 feet. This would provide a freeboard of 3.6 feet to the low spots in the embankment. The design discharge of 575 cfs would produce a stage of 2.7 feet and leave a freeboard of 0.9 feet.

It would be practical to complete this work this summer after the spring runoff is over.

Although it is not absolutely necessary at this time it would be advisable to cut all trees growing from the embankment, to eliminate the possibility of their being uprocted in a high wind, thereby causing a breach in the dam.

7. SUMMARY OF FACTS:

Mercers Pond Dam is located about 700 feet upstream from a convalescent home which borders directly on the brook. A giving away of the dam or a major flood would cause serious damage and possible loss of life at the convalescent home.

The dam is about 500 feet long with a maximum height of 20 feet. The typical section consists of earth embankment against a stone retaining wall forming the downstream face. The embankment and wall are in fair condition.

The original spillway has been rebuilt by the construction of a concrete wall across the original spillway notch. This wall forms a new overflow spillway, 39 feet long with a freeboard of l.l feet to low spots in the top of the embankment.

The drainage area tributary to Mercers Pond is 4.37 square miles. A large part of this drainage area (3.26 square miles) is tributary to West Lake, a large storage reservoir of the Danbury Water Department.

A hypothetical storm based on the 1938 hurricane rainfall was estimated to produce a peak outflow at Mercers Pond Dam of 575 cfs. This discharge would produce a stage which would over top the dam by 1.6 feet in several places.

February 17, 1966

Water Resources Commission
Mercers Pond Dam, Danbury, Connecticut

8. CONCLUSION

In my opinion this dam is unsafe at the present time because of the definitely inadequate spillway capacity. The dam is likely to fail because of a flood runoff overtopping the earth embankment. I believe it is necessary to increase the spillway capacity by lowering the overflow weir 2.5 feet below its present level.

9. RECOMMENDATION

I recommend that an order be issued to have the over-flow weir be lowered by 2.5 feet. In view of the hazard downstream, this action should be taken as soon as practical. I would suggest that this be accomplished before the 1966 hurricane season.

Respectfully submitted

Roser OBrown

Roger C. Brown

Committing Engineer

D-TO

.

DANBURY, CONN.

CROSS SECTION OF SPILLWAY

APPENDIX C

PHOTOGRAPHS

PLATE 2

STORCH ENGINEERS

WETHERSFIELD, CONNECTICUT

U.S.ARMY ENGINEER DIV. NEW ENGLAND CORPS. OF ENGINEERS WALTHAM MASS.

NATIONAL PROGRAM OF INSPECTION OF NON-FED. DAMS

MERCERS POND DAM

NOT TO SCALE

SCALE: AS SHOWN
DATE: JULY 1980

PHOTO 1 CREST OF DAM

PHOTO 2

DOWNSTREAM FACE OF DAM

PHOTO 3
SPILLWAY - UPSTREAM

PHOTO 4

SPILLWAY CHANNEL - DOWNSTREAM

PHOTO 5

DETERIORATED DOWNSTREAM WALL - WEST SIDE

PHOTO 6 OUTLET

PHOTO 7
SEEPAGE NEAR TOE OF DAM

PHOTO 8
SEEPAGE NEAR TOE OF DAM

APPENDIX D

HYDROLOGIC AND HYDRAULIC COMPUTATIONS

JOB Phase I Dam Inspec	ction - #4463
SHEET NO.	of
CALCULATED BY GJG	DATE_5/5/86
D-4	

					etermination of PMF	
NAME OF I	DAM	Merc	ers Pond D	him		
		-				,
DRAINAGE	ARE	4 45	SM -	33 SM Control	led by Westlake Rese	25.00
			DA = 1.2			
INFLOW		7 19				
1 1	\mathcal{L}	mm \a	lest Lake	- 3890 cts	1/2 PMF = 2230	0 + 5
					ce and peak from indep	/. 4
				simultaneously		2 CONDIENT
			880 c/s/sx		1/2PMF = 940 ds/SM	,
			000/ 5/-/			
	PMF	F= 1880	2(12)+2890	0 = 6146015	1/2PMF = 940(1.2)+2230=	225904
	. L	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			7 7 0 2 0 2 0	3,000,01
Estimati	ng t	he effec	t of surcharge	e storage on the Ma	aximum Probable Discharges	
					1/2 PM	7 F
	1.	Q ₀₁ =	: 6150	cfs	3360	
		•			5.5!	1 1
	1	-	6.4	relear1	0.7	· · · · · · · · · · · · · · · · · · ·
	Ъ	. STOR ₁	= 0.83			
***************************************	c	. Q _{D2} =	Q _{D1} (1 - STO	R ₁ / ₁ 9) = 588	31 cfs 3280	a \bigcirc 15
	25	и –		STOR ₂ = _	91" 535	.688
	1 1	1 :	The state of the s	3,0%2 - 1		
	Б	•	<u> = 0.8% </u>		0.69	J
		Q _{DA} =	5884 C	Ps	3237	7 045
			G,35		82'' 5.4 5.4	ا ح. ه
		''A -	0,00	3-UNA		
	Di	VF =	5885	cfs	1/2 PM = 3240	ر دل ر
			3000			
Canacity	οf	the smil	lway when the	nond elevation is	at the top of the dam	
oupac i cy	01					
		Q =	1036	_cfs or	% of the PMF	
				32	To of RPME	
		:				
F		1				<u> </u>
			* *	D-1		

JOB Phase	e <mark>I Dam</mark> In	spection -	# 4463
SHEET NO.	2	OF	10
CALCULATED BY_	GJG	DATE	4/25/80
CHECKED BY	BC	DATE _	7115/80
	-mination	of DME	

			•	Determinat	ion of PMF
NAME OF D	AM	WES	TLAKE	RESERVOIR DAM	
1 1					
DRAINAGE	AREA	3.	3 SM		
	Name of the last				
INFLOW	19	7 5 (ets/sm	(rolling terrain)	
		PM	1F = 197	(3.3)= 6517.5 cts	
	$-\downarrow I$	241	7F = 1/2	6517.5=3258.75	
		ļ.,			
Ectimatic	a kho	offor	t of curcha	ge storage on the Maximum Pro	habla Discharnes
ESCIMALIN	ig rije	CITEC	L OI SUICHA	ge storage on the riaximum Fit	1/2 PMF
	1	n .	6520	cfs	the state of the s
					3260 cts
	_2a.	H ₁ =	5.42	(e3ev.)	
	b.	STOR	. . 8, s		6.41
		0	• 0 ₅ . (1 - S	DR1/19) = 3600	ifs 2160 cts
				STOR ₂ * 6.8	3.7', 5.7"
		i -,			
			A = 7,66		6.0
		QDA =	3890	c15 ,	2230 (7)
		н =	41.5	STOR _A = 7.1	3.75 6.0
		''A			
	PMF		3890	cfs	12 PMF + 2230 C75
Capacity	of th	e spi	llway when t	e pond elevation is at the t	op of the dam
	- 1	1		_cfs br 50 % of t	
		ų *	1755		The state of the s
				87.4 % d	/2 YM F
		ļ.,			
	ļ				
	<u> </u>	1			
		<u> </u>			
	1		•	D-2	

JOB Phase	I Dam I	nspection	4463
SHEET NO.	3	OF	. 10
CALCULATED BY	GJG	DATE_	4/16/60
CHECKED BY	BOC	DATE	7/15/80

			AREA - C	APACITY	
ime of Dam:	MERCERS	POND DAM			
ELEV	DEPTH	AREA	AVG.AREA	VOL	Y VOL
0,0		6.0			0,0
T. M. C.	7.0		. 8.1	56.7	
7.0		10.1			56.7
	10.0		· 17.9	179	
17.0		25.7			236
Elev	(P+)		-		
18					
16					
14					
12					
10					
β					
6					
2 /					
				<u> </u>	
. V					
<i>o</i> 2	0 410 60	EU 100 120	140 160 18	io 200 22	0 240
			/ / / / /		
		Capacity	(Act1)		

Phase	I Dam Inspec	tion	4463
SHEET NO.	Ll	ÒF	10
CALCULATED BY_	hJP:	DATE	4/25/80
CHECKED BY	BOC	DATE	7/15/80
Stac	e Discharge		4 P

				·			SCA	St.	age D	ischa	rge	<u> </u>			
NAME	OF DA	M M	ERC	ERS	PO	OND	DA	+M			: ! ,	! !			
	i			<u> </u>	i i	2 <i>ND</i> Q= C	LH ³	ļ., i			<u>.</u>	! !			
36.1		Spill	way I			Spill	way]	I		Da	m	!		·	
lev	C	L	H	Q	С	L	H	Q	С	L	I	Ī	Q		QT
· · · · · · · · · · · · · · · · · · ·	2.75	39	0.5	38		1 .	j		2.65	400	0	.5	:3:75	· ······· , •••••	
	2.78		1.0	116	 		! ! !	ļ				0	10 60		
	3,24		1.5	232							1.	5-	19.47		
	3, 3 0		2.0	364	: ! !						2	0	2998		
	3.31		2.5	519	: :						2.	.5	41190		
	3, 32		3,0	67/3			22		<u> </u>	<u>.</u>	ļ -		,		
	3,32	·	3.5	848		of D						ļ	<u> </u>		
	3.32	ļ	4.0	1036		gr.					<u> </u>			, ,,	
	3.32		4.51	کاوروا			Total	سلا					<u> </u>		
	3, 32	ļ	5	14 47							ļ	ļ			
	3.32			1670					ļ						
	3.32		16.0								ļ				
	3/32	ļ <u>.</u>	16.5	121 415	<u>+</u> 						ļ) 			
/	<u> </u>	/			} }						ļ				
, /_	<u> </u>	_/			<u> </u>						<u> </u>	<u>.</u>			
							<u> </u>			da ante teletre en	i		Top o	of DI	tM .
		/			ļ		i 1 I				<u>;</u>			<u> </u>	
		/	ļ								; 				
3	-/				ļļ										
					<u> </u>				<u> </u>		<u> </u>	ļ			
	/ K									<u> </u>	i : : :				
	-//			· · · · · · · · · · · · · · · · · · ·							ļ				
	[4]										1				
	/s								ļ		Ę	ļ			
	/ <i>S</i> X	! !						1			7				
				<u> </u>							ļ				
1.		· · · · · · · · · · · · · · · · · · ·		<u> </u>				<u> </u>							
				·							! •	ļ		i	
				ļ						<u> </u>	İ				
		ļ 1	ļ.,	÷	<u> </u>						:		ļ		
,		<u> </u>		· · · · · · · · · · · · · · · · · · ·				<u> </u>	<u> </u>	·		<u></u>			
		1,000		2 000	!	3000		4000		.000	:		6000		7000
					D-4	Disch	arge			:					

Phase I Dam Inspection 4463

SHEET NO. 5 OF / O

CALCULATED BY GIG DATE 4/16/80

CHECKED BY BOC DATE 7/15/80

												ARE	Δ	_C>	<u>העם</u>	ITY		£	7/			_
Name	of	Dam:	//	FCT	Ι Δ	ΚE	ƊF	- C	DAN						1							=
	· - - :		VEN	-2.I	, 	() E	124	, <u>چ</u> ہ ۔ ا		L	-i	<u>:</u>					1	.1				٠.
	ELI	₹ V		DEF	בניתיכ		,	ARE	. [· · · · · · · · · · · · · · · · · · ·		:						:	:			٠.
• • • • • • • • • • • • • • • • • • • •		7	ļi.	DEI	LR		4 4				AVO	3 . A.	REA		V	OL		Σ		OL.	· ·	:
	0,		ļ <u>. i</u> .	- -			2	24.	7.9		·								0	0_	:	; : -
			1 1	- 4	٥,		ļ				_ユ	6	I		2:	113	3. :	<u>.</u>	ļ •	ļ		
	9.0)	1	·			, ,	286	9.3								<u> </u>	· 	2	413	3	
		<u>.</u>	ļļ.	10	.ව		ļļ.				3	3 <i>9</i>	,З		33	393	}	i	:			
	19.	٥			<u>.</u>		3	39	<i>0</i> .3									i	<u>5</u>	800	,	
								i			1					'''' { · ·····	:			-	;	
			5+	oraca	- he	بامد	,	5 C D 1	السمع	iς	A D10)~^\	100	tel		76	LLIA	Δ	۱ م	 1	<u></u>	
		Elev	(A)	7				F ⊷¶ (ječ 	,		A IAL		11114		7		7.9		⊆	. 		
							1			•		† i		<u></u> -		<u>-</u>			·	1	<u>.</u>	
	1		<u> </u>				<u> </u>				· · · · · · · · · · · · · · · · · · ·			<u>-</u>	<u>-</u>					<u>.</u>	; ;	
- 2	6					· · · · · · · · · · · · · · · · · · ·	ļ j									······································			ļ	<u>.</u>	<u> </u>	1
							ļļ			<u>į</u>	1	,			<u>-</u>		-		,		1	1
	8		ļ . .				ļ <u>i</u>				ļ.,									ļ	ļ.,	
	•			1 1	····· ; ····													<u>!</u>	: 1	ļ	ļ	1
/	6				: : ::	1				<u>.</u>							! 	į 1	<u> </u>	<u> </u>		
			ļ								ļ.,					: :			i i	: 	: : :	
/	4																:		:			
								:		i					:			;	: :		:	
//		:				:							1	: : : :				· · · · · · · · · · · · · · · · · · ·	<u>.</u>		!	1
											4				1-		. 	<u>-</u>		÷	! : :	1
,		: !						:				. :					<u> </u>			ļ	ļ ļ	
/(1 :					1-	······					ļ		ļ	<u> </u>	: :	
			· · · · · · · · · · · · · · · · · · ·											<u> </u>			ļ	:		! ,		
	3									<u></u>	1 1						ļ			ļ	1 	<u>.</u>
					:						ļ					ļ		:		: •		<u> </u>
- 6	,							-						1				ļ				-
									- 	-	<u> </u>						<u> </u>	•				<u>!</u>
<u>.</u>	,		1			ļ ļ							-		~	 		1				
													100	ره	רטה	<u> </u>		614	.1.	: :	-	:
ą												:	:		:	:						
					i			!		į	1			į	!							
													5°	11)w	ig C		<u></u>	اایی	.2			-
	<i>(</i> 3)			/ <u>0</u> 00		26	00	-	9000			40				600			600	0	• · · · · · · · · · · · · · · · · · · ·	-
						, A.Y	:				L		:	<u>.</u>			· · · · · · · · · · · · · · · · · · ·					
t t see can a						* * * * * *	·	_	ا	/ A	Jn.											
	• •					• •	يب ا	אין ג	ocity	Λυς	、アゴノ		:									1
04 Avelebe	Ya	VEBS IN.	70	4.44				_]	D-5 —				:									_

JOB Phase	I Dam Inspec	tion 4463
SHEET NO.	6	OF 1.0
CALCULATED BY.	<u> </u>	DATE 4/16/80
CHECKED BY	BOC	DATE 7/15/80
	ge Discharge	

									ta	ge Di	B CI	lar	ge					_
NAME	OF DAM	West	- Lak	e R	es.	Dam	;		!		i					***************************************		
<u>.</u>		: :			<u> </u>	Q=(CLH 3/2										-	
;	s	pillwa	y I *	:			lway	II			1	Dam	:				:	
Elev	С	L	H	Q	C	L	H	Q		Ç	L		H	9)		Q1	ŗ
	\parallel H $_{\rm T}$	90 0)c								<u>.</u>			,		+		!
0.75	.247	6.	5 1	81					İ	2.7	40	0	0.5	8	90	<u> </u>		! !
1.49	.489		ی ه	5/6						2.63	70	٥	1.0	16.	50			
2.18	.७8।		5 0	124						2.63	40	0	1,5	19	3 0	<u>;</u>		<u>.</u>
2,95	,955	2	D 1	480						2,63	40	0	20	30	175			!
3.68	1.18	ો	5 2	575.						2.63	40	ٰ ن	<u> </u>	41	85			ļ
4.41	1,-11	3	0 2	750	<u> </u>				i i				<u> </u>					<u>.</u>
5,13	1,63	3	, e S	3-180					/								-	-
J. 85	1.85	<u> </u>	0 4	1280														
	* Ec	quation	8-40	Ho	ind k	ه داد ه	J Hyo	Iraul	ics	βų	Kin	9 5	Br	ater		<u> </u>	-	
		EV (A)					/		i ,				<u> </u>				<u> </u>	
		st Dec						Ictal										
<u> </u>	-1.0	3 3 3 3 3 3 3 3 3 3	1							<u> </u>					ļ i .			ļ.,
						//									ļ			
A-Herriman, many							Jar	1400	20	m	EL	(9)	٠١. ٦					
				/	/												<u> </u>	<u>.</u>
	3.0																	
				,							ļ. ļ					_		-
								[; ;				, .			<u>.</u>	ļ.,,
		ي	Y											<u>, </u>		 		
	20	9									<u> </u>						i i	ļ.,
				•						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
		/										-				, 		1
														_				!
	1.0	/							- 1:0000047	1	ļ 						: 	· -
1									} :								<u>.</u>	<u>.</u>
							1 1				ļ!	: : :		. 🚣			; 	
											1		<u> </u>		ļ			<u>.</u>
			<u> </u>				Spi	ااسم	γİ	E	: <u> </u>	ال	<u>.2</u>					-
	٥		1000		2000		300	- !		4000		K	50 a a		ļ	600	- :	
1 1	1 1	1 1				SCH	, ,				;	:		,				ļ.,
			,								· ·		. 1	1				1
			:				:									:		

Phase	I Dam Inspect	ion - #4463
SHEET NO.	7	OF
CALCULATED BY	hJP	DATE 4/25/80
CHECKED BY		DATE 7/15/80

							CHECKE	-	stream Hyd	droars	DATE		,
#Ru7	le of	Thumb"	Guidanc	e for I	Estim	ating Do	wnstrear		ure Hydro				=
	. 							` [
NAME	E OF [MAC	MER	? C E	R5	P_{i}	OND	1	DAM				:
Sect	tion 1	I at Da	mk										
	-1	S = _	61.	Acft	2/2	,		1.	/ ₂ /8 ^{3/2} =				<u> </u>
	2.	Q _{P1} =	8/27 Wb	√ 9	γ-/-	= 3/27	(100) (32,2)"	18 12 =	12,9	840CT		į
	3.	See S	Sections	<u> </u>	! !								
Sec	tion]	II at											; ; ;
	4a.	н. :	= 10.5	5	A2 =	: 105	<i>-0</i> L	, = <u> </u>	800.	٧, =	19.3	Acft	
	1	- 1	= Q _{P1} (1-1	2 2	1 . 1	1 1		• •		4			; ; ; ;
		:	–	•	- 1			.13					ļ
	c.	H ₂ =	8.8'										<u> </u>
	[A _A =	= 9/2	2			V ₂ =	16.7	Acft	<u> </u>
		Q _{P2}	= 9312°	45									
Sec	tion	III at											
	;		9.6		A_ =	= 230	50 [_ =	6-00	٧, =	31.6	Acft	
		•			•	. !	· '	-		3			
	ļ		= Q _{P2} (1-			1		215					ļ
	c.	H ₃ =	5.7		and the contract of	= 91							.
	<u> </u>				A _A =	= 16	05			_v ₃ =	22.1	Acft	ļ
		Q _{P3}	= 4,666	cf3									<u>i</u>
Sec	tion												
			7.0		A ₄ =	= /2!	50 L	4 = _	550	V. =	15.8	Acft	
		7		. /6/ =				·		4			: : : :
			= Q _{P3} (1-V	4/3) -	بيليان المالية			cfs					:
	C.	H ₄ =	3.8	_	A ₄ =		00						<u>.</u>
					A _A =	<u> - 27</u>	<u>'5</u>			¥4 =	11.0	_ Acft	
		Q _{P4}	* 2,35	4 cf	>								
													(
			1000			r	D - 7						,

4/4/63 9 STORCH ENGINEERS/STORCH ASSOCIATES 10 SHEET NO. Engineers - Landscape Architects Planners - Environmental Consultants BAH 4/120/80 CALCULATED BY BDC Section n= .05 5 = 1.25% ځ ي R Q WD V. 65 115 4.77 1.77 549 146 8-11 2 93 358 2879 8.04 3.85 0.11 2.46 120 680 3.18 7069 5.67 10.39 0.11 3.58 950 111119 140 6.79 11.70 0.11 10 48423 230 2800 12.17 5.29 17.29 0.11 20 123,074 325 5625 6:69 17.3 21.87 0.1) 30 Coracity AR.E.A. AREA 2800 10,000 40,000 20,000 30,000 D-8 MECHARGE D CES

rianir	013-1	ZIIVII OI	nmentai Con	autonita	CHEC	KED BY	BDC	DATE	7/5/8			
							SCALE Section III					
						: : . : <u>:</u>		·	<u>,</u>			
									^10' 50 -			
									5=.2/			
	1								7			
	1											
		D	w	A	R	PE	<u>ب</u> ی	V	Q			
		2	1 1 1		1.416			1 1	285			
		5-		750	•	the state of the s	1 1		2073			
		8		1640		2.75		1 1	5990			
		10		1 1 1	5,489			•	104145			
		20	870	9200	10.57				58,900			
		30	13 00	1 1 1	15.58				168,000			
		M										
Dept4 (f	`r)											
20							* Ced					
								1				
							Capaci	1				
15												
10		,	//									
		//										
	/											
	1/	/										
* 1	[]											
/	/											
1/	/					<u> </u>		Are				
1 1			2000	4000	6000		\$000	10000	34			
0 1	!	<u> </u>	10,000	+-+-	30,000		- } + +	50 000	60 000			
0		**************************************	, ,,	20,000 Disaka		<u> </u>	(0 00 0	>0 800				
		<u> </u>		UISCAR	rge ces	<u> </u>						
		·	## * * * * * * * * * * * * * * * * * *		D-9							

41163 10 10 STORCH ENGINEERS/STORCH ASSOCIATES SHEET NO .-Engineers - Landscape Architects Planners - Environmental Consultants 4/130/80 BAH CALCULATED BY. 80 CHECKED BY Section n= 05 5=.2% <u>ځ</u> ی Pi W R V Q A 1.676 285 2 1.416 1.26 .04/472 120 170 3,000 2,764 2.08 2073 250 750 8 3.652 4,556 5990 360 1640 2.75 10 4.136 460 2525 5.489 3.11 10445 4.82 6.402 20 870 10.57 54900 9200 20250 15.58 6,23 8.280 168,000 30 1300 Depth (fr) 20 10 Area 10000 6000 8000 2000 4000 10,000 60 000 30,000 20,000 40 000 50 000 Discharge Cfs

D-10

APPENDIX E

INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS